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1 Introduction
Foreword: p-adic cohomology theories are always surrounded by lots of technicalities. I realized
while preparing this talk that I won’t be able to tell you everything about all (or indeed any)
of the classical cohomology theories. Instead I will try to give you a general taste of what
they are like, and then go into more detail on de Rham cohomology and its relation to Hodge
cohomology. Finally I will give some examples of the extent to which things can misbehave in
characteristic-p and p-adic situations.

2 Rundown of classical cohomology theories
The story of p-adic cohomologies in algebraic geometry begins with André Weil, who in 1949
proposed his conjectures on point counts of algebraic varieties over finite fields. His proposed
method of attacking the conjectures, which was ultimately carried out by Dwork, Grothendieck,
Artin, Deligne, and others, was to obtain them as formal consequences of the existence of a cer-
tain type of cohomology theory, now known as a Weil cohomology theory. Such a cohomology
theory should behave like singular cohomology for C-varieties, but should take varieties over
finite fields as input. This was eventually accomplished by étale and later crystalline cohomol-
ogy, which are both defined over p-adic rings.

Fix an arbitrary base field k and a coefficient field K of characteristic 0. A K-valued Weil
cohomology theory for k-varieties consists of a contravariant functor H∗ from the category of
smooth projective varieties over k to the category of finite-dimensional graded-commutative K-
algebras, along with some extra data, satisfying some formal properties. For us the most impor-
tant of these extra properties is Poincaré duality, which says that H i(X) = 0 for i /∈ [0, 2n] (for
n = dimX), H0 ∼= H2n ∼= K, and the multiplication maps H i(X)×H2n−i(X)→ H2n(X) ∼= K
are perfect pairings.1

∗Notes for a talk in Berkeley’s student number theory seminar.
1A Weil cohomology theory is also expected to satisfy the Künneth formula H∗(X)⊗H∗(Y ) ∼= H∗(X×k Y ),

and to receive a cycle class map from the Chow ring—i.e. a closed subvariety Z ⊂ X of codimension d must
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Besides singular cohomology for (the analytification of) varieties over C, there are basically
three classical Weil cohomology theories:

name étale de Rham crystalline
base ring k a field any k a perfect field of char p

coefficient ring Z` = base ring W (k)
Weil coh if: ` 6= char k, ⊗Q over k, char k = 0 ⊗Q

idea of construction étale site hypercoh of Ω•X/k crystalline site, or WΩ•X/k

extra structure action of Gk Hodge filtration semilinear Frobenius
intuition ≈ singular like analytic dR H∗dR(smooth lift to W (k)), if ∃

Remark: We can get all three of these in the same picture if we start with a variety over a p-adic
integer ring OL, such as Zp. Namely, we can take the p-adic étale cohomology of the generic
fiber (base = L, coefficients = Zp), the de Rham cohomology of the full integral model (base
= coefficients = OL), and the crystalline cohomology of the special fiber (base = k = OL/m,
coefficients = W (k)). Time permitting, I will say something later about how these compare.

I won’t have time to say much about all of these. Étale and crystalline cohomology are both
things that one can spend years learning about. Instead, I’ll just talk about the most accessible
of the three, de Rham cohomology, and explain its relationship to Hodge cohomology. Then
I’ll mention some pathologies that can happen in characteristic-p and p-adic situations.

2.1 Non-example: sheaf cohomology of OX

One interesting cohomology theory which is not a Weil cohomology is the sheaf cohomology
H i(X,OX). Recall that sheaf cohomology is defined as the derived functors of the global sections
functor H0(X,−) = Γ(X,−), and it can be computed in principle by an injective resolution
of the sheaf in question. (In practice, we usually calculate it using long exact sequences, or if
absolutely necessary by a Čech cover.) Namely, if 0 → F → I0 → I1 → · · · is an injective
resolution2, then H∗(X,F) is the cohomology of the complex 0→ Γ(X, I0)→ Γ(X, I1)→ · · · .
Remember this for later:

sheaf cohomology := derived functors of Γ (1)
:= cohomology of (Γ applied to an injective resolution of F). (2)

What’s “wrong” with sheaf cohomology of OX? First of all, if X is n-dimensional, then sheaf
cohomology vanishes above cohomological degree n, instead of 2n. Moreover, the top cohomol-
ogy group need not be 1-dimensional; it is often bigger and often trivial. So there is no hope
for Poincaré duality.

induce a class in H2d(X), with various compatibilities. Some authors also require Weil cohomologies to satisfy
the Lefschetz theorems.

2An object in an abelian category is injective if all maps to it extend along injections. Think of Q as a
Z-module. In the category of abelian sheaves, they are constructed as products of skyscraper sheaves—not
something you’ll ever want to work with.
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The duality that is enjoyed by sheaf cohomology is Serre duality, which (for X/k smooth projec-
tive of dimension n and F a vector bundle onX) takes the formH i(X,F)∨ ∼= Hn−i(X,F∨⊗ωX).
But this relates the cohomology of OX to that of ωX , not to itself. Still, this is related to
Poincaré duality (for de Rham cohomology), and we will see it again soon.

2.2 de Rham

For X/k smooth of dimension n (k an arbitrary field), recall that the sheaf of differentials Ω1
X/k

is a vector bundle of rank n. The bundle Ωi
X/k of i-forms is defined to be its ith exterior power,

and these come equipped with k-linear (not OX-linear) maps d : Ωi → Ωi+1 forming a complex

OX = Ω0
X/k → Ω1

X/k → Ω2
X/k → · · · → Ωn → 0, (3)

known as the de Rham complex Ω•X/k. The de Rham cohomology of X is defined as the hyper-
cohomology of this complex.

What does hypercohomology mean? The point is that the literal cohomology sheaves of Ω•X/k,
or the cohomology groups of Γ(X,Ω•X/k), aren’t the right objects to consider, because each Ωi

may itself have nontrivial sheaf cohomology. So “hypercohomology” means “replace it with an
injective resolution, apply the global sections functor Γ, and then take cohomology”—just like
the sheaf cohomology from before, but this time we’re starting with something that is already
a complex. In fact, this is exactly the meaning of the right derived functors RiΓ(X,−).

In principle, one could compute hypercohomology as follows. First choose an injective res-
olution of each Ωi. With some care, one can do this compatibly for all i: that is, we can
construct a commutative diagram

...
...

... ···

0 // I02

OO

// I12

OO

// I22

OO

// · · ·

0 // I01

OO

// I11

OO

// I21

OO

// · · ·

0 // I00

OO

// I10

OO

// I20

OO

// · · ·

0 // Ω0

OO

// Ω1

OO

// Ω2

OO

// · · ·

0

OO

0

OO

0

OO

where the Iij are injective sheaves of k-vector spaces, the rows are complexes, and the columns
are exact. Reading down the diagonals of this diagram (and putting alternating signs along
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the rows or columns to make the diagram anti-commutative instead of commutative), we get a
quasi-isomorphism from Ω•X/k to a complex of injective sheaves:

0 // Ω0

��

// Ω1

��

// Ω2

��

// · · ·

0 // I00
± // I01 ⊕ I10

± // I02 ⊕ I11 ⊕ I20
± // · · ·

This bottom complex is a good substitute for Ω•X/k in the sense that it has the same cohomology
sheaves, but the sheaf cohomology of its terms is trivial. The hypercohomology H∗(Ω•X/k) is
defined as the cohomology of Γ(this complex).

Of course, I would never recommend actually computing an injective resolution of anything.
There’s a better way, given by the machinery of spectral sequences. Going back to the big
double complex from a little while ago, let’s delete the Ω• row and apply Γ to everything:

...
...

... ···

0 // Γ(I02)

OO

// Γ(I12)

OO

// Γ(I22)

OO

// · · ·

0 // Γ(I01)

OO

// Γ(I11)

OO

// Γ(I21)

OO

// · · ·

0 // Γ(I00)

OO

// Γ(I10)

OO

// Γ(I20)

OO

// · · ·

0

OO

0

OO

0

OO

(This is called the E0 page of the spectral sequence.) We want the cohomology of the total
complex of this; i.e. the complex whose terms are the successive antidiagonals of the diagram.
Let’s first calculate the cohomology just in the vertical direction:

0 // H2(OX) // H2(Ω1
X/k) // H2(Ω2

X/k) // · · ·

0 // H1(OX) // H1(Ω1
X/k) // H1(Ω2

X/k) // · · ·

0 // H0(OX) // H0(Ω1
X/k) // H0(Ω2

X/k) // · · ·

(This is the E1 page.) These are familiar objects—the sheaf cohomology groups of the sheaves
of differentials—and they can actually be computed in practice. This is great, because if we
compute these, we can avoid thinking about any actual injective resolutions, and just start the
calculation here.
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By commutativity of the diagram, we get induced maps in the horizontal direction, form-
ing a complex in each row. Then we take cohomology of the rows, and by some diagram chase
we end up getting maps in the (2,−1) direction, then (3,−2), and so on. This continues for-
ever. But each position in the diagram eventually stabilizes, because the maps to and from it
eventually have their other endpoints outside of the first quadrant. The machinery of spectral
sequences tells us that the objects on the resulting E∞ page are the successive quotients of a
filtration of the hypercohomology H i

dR(X/k). This is called the Hodge filtration on de Rham co-
homology, and the spectral sequence producing it is called the Hodge-de Rham spectral sequence.

Let’s make a few more observations, assuming that X/k is smooth projective of dimension
n. Recall our statement of Serre duality: for F a vector bundle on X, we have H i(X,F)∨ ∼=
Hn−i(X,F∨ ⊗ ωX). For F = Ωi

X/k, we have F∨ ⊗ ωX = Ωn−i
X/k, since the sheaves of differentials

in complementary dimensions admit a perfect pairing up to ωX = Ωn
X/k. So Serre duality says

that the E1-page of the spectral sequence is symmetric with respect to a 180-degree rotation.3
This symmetry gives rise to Poincaré duality for de Rham cohomology. In particular, we have
H0

dR(X/k) = H0(OX) = k, H2n
dR(X/k) = Hn(ωX) = H0(OX)∨ = k, and H>2n

dR (X/k) = 0.

At this point it may be useful to write down some Hodge diamonds; i.e. arrays of integers
recording the dimensions of the Hodge cohomology groups Hq(X,Ωp

X/k), for various types of
varieties X:

curves of genus g :
g 1
1 g

(4)

Pn :

0 0 · · · 1
...

... ··· ...
0 1 · · · 0
1 0 · · · 0

(5)

abelian surfaces :
1 2 1
2 4 2
1 2 1

(6)

K3 surfaces :
1 0 1
0 20 0
1 0 1

(7)

An :

0 0 · · · 0
...

... ··· ...
0 0 · · · 0
∞ 0 · · · 0

(8)

Note that An does not satisfy finiteness or Serre or Poincaré duality, as it isn’t proper. In fact
the Hodge diamond “knows” that An is “a contractible space with too many functions”. Also

3In fact, there is a post somewhere on StackExchange or MathOverflow, which I can’t find at the moment,
showing that this symmetry propagates to the ith page of the spectral sequence for all i ≥ 1.
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note that all of these Hodge diamonds are symmetric across their diagonals, in addition to being
rotationally symmetric. This is known as Hodge symmetry, and it is true over an arbitrary field
of characteristic 0. It is not true in characteristic p, as we will see.

So algebraic de Rham cohomology can be computed (in some sense) by a process starting
with the sheaf cohomology of each Ωi

X/k, and these can be calculated directly for most varieties
we’re interested in. In fact the situation is even better: if char k = 0, the spectral sequence
degenerates at E1; that is, every map on and after the E1 page is zero. In this case, E∞ = E1,
and hidR(X/k) is just

∑
p+q=i h

p,q(X/k). This can be proved in two ways. The first is to reduce
to the case of C and appeal to classical (analytic) Hodge theory. The second is an algebraic
proof of Deligne and Illusie, which remarkably proves a statement about characteristic zero
using almost exclusively characteristic-p methods.

2.3 Miracles

There are a few things here that I view as miracles. The first is that all of these cohomology
theories actually have the formal properties we expect of them. The second is that in spite of
their vastly different origins, they behave quite similarly.

In fact, there are various theorems in p-adic Hodge theory that compare one cohomology theory
to another after base change to a sufficiently large “period ring”. There is also a web of conjec-
tures, religious dogma, and some actual theorems (going by the name of “motives”) predicting
that all sufficiently well-behaved cohomology theories factor through some universal cohomol-
ogy theory. I don’t know anything about motives, but for the three cohomology theories we’ve
discussed, there is now a known cohomology theory strong enough to recover all three. This is
the so-called prismatic cohomology (formerly Ainf-cohomology) of Bhatt-Morrow-Scholze and
Bhatt-Scholze, and it applies to the situation mentioned earlier where we have a smooth variety
over a p-adic integer ring.

3 Serre’s example over Fp
We stated earlier that the Hodge-de Rham spectral sequence always degenerates on E1 over
a field of characteristic 0. In 1958, Serre gave an example showing that this does not hold in
characteristic p. We’ll also see that Serre’s example fails Hodge symmetry, and the idea behind
it will lead to even stranger behavior over p-adic integer rings.

Some vague motivation for Serre’s construction: Imagine a p-fold covering of connected man-
ifolds Y → X, with Y simply connected. This gives π1(X) ∼= Z/pZ and thus Hsing

1 (X;Z) ∼=
(Z/pZ)ab = Z/pZ. For any ring R, the universal coefficient theorem turns this into a copy of
R/pR in H2

sing(X;R).

A cohomology theory valued in characteristic p (e.g. singular with Fp coefficients) will see
this p-fold cover, but a cohomology theory valued in pure characteristic 0 (e.g. analytic de
Rham or singular with Q coefficients) won’t.
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If we repeat the story for X, Y varieties over Fp, then the Hodge cohomology Hq(X,Ωp
X) will

unsurprisingly behave like mod-p singular cohomology; i.e. we will have h0,1 + h1,0 = 1. But
H i

dR(X/Fp) will behave like a Weil cohomology theory, like `-adic étale cohomology, ` 6= p. In
particular, it will not see the p-fold cover! This forces the Hodge-de Rham spectral sequence
to not converge on E1.

Let’s write down the actual construction. Let p > 3 be a prime, k = Fp, and G = Z/pZ.
This acts on P3

k by the matrix

A =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 . (9)

(This is the only place where we use the condition p > 3: if p ≤ 3, then Ap 6= 1.) Then consider
the quotient P3 /G = Proj k[w, x, y, z]G. This is a projective 3-fold, which is smooth away from
the fixed locus of G on P3. But you can check that the fixed locus consists of a single point with
projective coordinates [1 : 0 : 0 : 0], so P3 /G has only one singularity, albeit a pretty nasty one.

Now we can build our varieties X and Y . Let X be a smooth surface in P3 /G that misses the
singular point, and let Y be its preimage in P3. These are both smooth (connected) surfaces,
and Y → X is a p-fold cover. Better yet, Y is cut out by a single homogeneous equation of
degree d in P3, so we can calculate the sheaf cohomology of OY using the closed subscheme
exact sequence. We can also get the cohomology of Ω2

Y = ωY by Poincaré duality, and that of
Ω1

Y by combining the closed subscheme, Euler, and conormal exact sequences. The upshot is
that the Hodge diamond of Y looks like:

a 0 1
0 b 0
1 0 a

, (10)

where a and b are some explicit cubic polynomials in d.4 One can then run a spectral sequence
involving the group cohomology of G acting on the Hodge cohomology of Y to compute the
Hodge diamond of X:

a/p+ 1 0 1
1 b/p 1
1 0 a/p+ 1

. (11)

(Disclaimer: I worked this out almost completely a few years ago, but there may be some slight
errors.) Here we can see that Hodge symmetry indeed fails. When one runs the Hodge-de
Rham spectral sequence, two pairs of 1’s cancel along knight’s-move maps.

4 BMS’s example over OC
4Namely, a =

(
d−1
3

)
and b = 2d3−6d2+7d

3 .
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